DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 30 Yrs Exp. in the feld of Organic Chemistry. Serving chemists around the world. Helping them with websites on Chemistry.Millions of hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contributionn
Sunday, 28 July 2013
Brevetoxin synthesis
Friday, 26 July 2013
One-Pot Approach to α,β-Unsaturated Carboxylic Acids
One-Pot Approach to α,β-Unsaturated Carboxylic Acids
Carboxylation of alkynes with carbon dioxide in a one-pot approach could become a practical route to unsaturated carboxylic acidsRead more
Concise Total Synthesis of a Newly Discovered Alkaloid
A concise synthesis of a novel alkaloid natural product with the pyrroloindoloquinazoline skeleton has been devised
Read more
Tuesday, 23 July 2013
Nano-Technoloogy Makes Medicine Greener
Sunday, 21 July 2013
The first total synthesis of fuscain
First total synthesis of fuscain
Fuscain is a new furanolactam isolated from the sponge Phacellis fusca from the South China Sea. Furan analogues isolated from marine organisms have valuable medicinal properties. The first total synthesis of fuscain is reported in Journal of Chemical Research December issue. The key step in the synthesis is the formation of seven-membered lactam by acylation of a furan ring using the mild Lewis acid CuSO4•5H2O.
Fuscain, a new furanolactam which was originally isolated from the sponge Phacellis fusca collected in South China Sea, showed a moderate cytotoxicity toward P388 and L1210 cell lines. The same sponge yielded three pyrrololactam alkaloids: saldisin, 2-bromoaldisin and debromohymenialdisin.2 Recently, furan analogues isolated from marine organisms have shown anticancer,3–5 antibacterial,6 anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis and antiviral activities11. Aldisin-based derivatives can be easily synthesised. However, it is still a challenge to synthesise fuscain. Hence the biological effects of fuscain and its derivatives on cell cycle progression and antitumour activities have rarely been reported. The synthetic route to fuscain is shown below.
The key step is an intramolecular Friedel–Crafts cyclisation to form the seven-membered ring. Various Lewis acids (polyphosphoric acid, POCl3, polyphosphoric acid–acetic acid, POCl3–P2O5, TFA or MSA) have been reported for Friedel– Crafts cyclisation.13,14. Initially, we selected PPA and P2O5 as catalysts but no product was obtained. Because of the structural difference between Alidisin and fuscain, the aromaticity of furan ring is less than a pyrrole ring, and a furan ring usually polymerised under acidic conditions, we selected a relatively mild Lewis acid CuSO4•5H2O to complete the intramolecular cyclisation to form fuscain.
Source: Journal of Chemical Research, Volume 36, Number 12, December 2012 , pp. 736-737(2)
doi: 10.3184/174751912X13528167435099
Yuan-wei Liang, Xiao-jian Liao, Chang-jun Wang, Jin-zhi Guo, Shuo Li and Shi-hai Xu*
Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
Friday, 19 July 2013
A Spontaneous Resolution
Read more
Wednesday, 17 July 2013
Building nanographene by organic synthesis
Direct C-H coupling of pyrene makes nanographenes with defined shape and edge structures
Japanese scientists are making tiny fragments of graphene
using direct
cross-coupling of C-H bonds to determine what effect size and edge geometry
have on the properties of carbon materials. By bolting together aromatic hydrocarbons, they can
build nanographene fragments with defined shapes in an attempt to relate geometry to performance.
cross-coupling of C-H bonds to determine what effect size and edge geometry
have on the properties of carbon materials. By bolting together aromatic hydrocarbons, they can
build nanographene fragments with defined shapes in an attempt to relate geometry to performance.
Speaking at the RSC’s seventh International
Symposium on Advancing the Chemical Sciences in Edinburgh, UK, Kenichiro
Itami from Nagoya University explained .............read all at
Subscribe to:
Posts (Atom)