DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 30 Yrs Exp. in the feld of Organic Chemistry. Serving chemists around the world. Helping them with websites on Chemistry.Millions of hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n

Saturday, 18 October 2014

Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks







Schematic representation showing the general flow reactor setup for the production of MOFs.
The precursor solutions are pumped continuously, mixed via a static-mixer (T-piece) and 
enter the coiled reactor tubes at temperature (T). A backpressure regulator (BPR) situated
after the reactor coil is used to maintain a constant liquid pressure. 
The residence time can be varied by changing the length of the reactor or pumping rates.

Figure 1: Schematic representation showing the general flow reactor
 setup for the production of MOFs.
http://www.nature.com/srep/2014/140625/srep05443/full/srep05443.html#f1

Further deployment of Metal-Organic Frameworks in applied settings 
requires their ready preparation at scale. Expansion of typical batch
 processes can lead to unsuccessful or low quality synthesis for some 
systems. Here we report how continuous flow chemistry can be
 adapted as a versatile route to a range of MOFs, by emulating 
conditions of lab-scale batch synthesis. This delivers ready 
synthesis of three different MOFs, with surface areas that 
closely match theoretical maxima, with production rates 
of 60 g/h at extremely high space-time yields.

1 comment:

  1. We make the custom synthesis process more efficient and cost effective while maintaining the highest standards of quality and reliability. 1-benzyl-3-methylimidazolium nitrate

    ReplyDelete