DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 30 Yrs Exp. in the feld of Organic Chemistry. Serving chemists around the world. Helping them with websites on Chemistry.Millions of hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n

Wednesday, 14 May 2014

Building Strong Carbon Acids from 1,1-Bis(triflyl)alkadienes










Strong carbon acids set to become a useful class of organocatalysts
Read more

Revealing the Essentials for Effective β-Glucopyranoside Recognition



Revealing the Essentials for Effective β-Glucopyranoside Recognition








A step forward in the design of synthetic receptors for the recognition of carbohydrates
Read more

Organocatalytic Route to α-Amino Acid Derivatives









Both enantiomers of substituted α-amino acid derivatives selectively synthesized
Read more

Sunday, 11 May 2014

A highly efficient approach to vanillin starting from 4-cresol

Green Chem., 2014, 16,2807-2814
DOI: 10.1039/C4GC00003J, Paper
Jian-An Jiang, Cheng Chen, Ying Guo, Dao-Hua Liao, Xian-Dao Pan, Ya-Fei Ji
A highly efficient three-step approach to vanillin has been developed starting from 4-cresol.

A highly efficient approach to the famous flavor and fragrance compound vanillin has been developed starting from 4-cresol with the attention focused on improving the sustainability of all the reactions. The approach involves a three-step sequence of the quasi-quantitative selective clean oxybromination of 4-cresol, the high-yield selective aerobic oxidation of 2-bromo-4-cresol, and the quantitative methoxylation of 3-bromo-4-hydroxybenzaldehyde with the recovery of pure methanol. Herein, the pivotal oxidation and methoxylation reactions are logically investigated and developed into two concise methodologies. As a green alternative, the approach holds significant value for the sustainable manufacturing of vanillin.

Saturday, 19 April 2014

Au catalyzed synthesis of benzimidazoles from 2-nitroanilines and CO2/H2




Green Chem., 2014, Advance Article
DOI: 10.1039/C4GC00153B, Paper
Leiduan Hao, Yanfei Zhao, Bo Yu, Hongye Zhang, Huanjun Xu, Zhimin Liu
The gold-catalyzed synthesis of benzimidazoles from 2-nitroanilines and CO2 in the presence of H2 was reported, and a series of benzimidazoles were obtained under relatively mild conditions.


The gold-catalyzed synthesis of benzimidazoles from 2-nitroanilines and CO2 in the presence of
 H2 was reported, and a series of benzimidazoles were obtained under relatively mild conditions. 
Several supported Au catalysts including Au/TiO2, Au/Al2O3, Au/ZnO, Au/polyurea and Au/hydrotalcite
 were examined for the synthesis of benzimidazole from the reaction of 2-nitroaniline with CO2 and H2
among which Au/TiO2 displayed the best performance. The reaction mechanism was investigated, 
and it was found that the production of benzimidazole underwent the formation of o-phenylenediamine 
via the hydrogenation of 2-nitroaniline, followed by the cyclization of o-phenylenediamine with CO2 and H2
This work provides a CO2-involved route for the synthesis of benzimidazoles, 
which may widen the applications of CO2 in the chemical synthesis.

ORGANIC SPECTROSCOPY INTERNATIONAL: Ethyl 4-nitrobenzoate NMR

ORGANIC SPECTROSCOPY INTERNATIONAL: Ethyl 4-nitrobenzoate NMR:



'via Blog this'

Tuesday, 15 April 2014

Natural sweeteners maple syrup, agave, and honey are complex mixtures with bioactive components that might confer health benefits

Pass the syrup! Maple syrup is a complex mixture of compounds, incuding bioactive components that might confer health benefits.
http://cen.acs.org/articles/92/i15/ACS-Meeting-News-Looking-Beyond.html

Maple syrup, agave, and honey are well-known for their roles as sweeteners. As such, their primary constituents are simple sugars such as sucrose and fructose. But scientists exploring the composition of these sweeteners are finding them to be surprisingly complicated.
These sweet mixtures contain many other classes of compounds, especially polyphenols, some of which may have bioactivity that imparts health benefits. Scientists hope to identify the beneficial compounds and eventually increase their concentration in sweeteners, so sweets can be more than just treats. Researchers described their latest findings in a symposium sponsored by the Division of Agricultural & Food Chemistry at the American Chemical Society national meeting held last month in Dallas.
Maple syrup is produced from sap of certain maple species, especially the sugar maple, Acer saccharum, which is native to eastern North America. Maple syrup is produced only in the U.S. and Canada, and about 80% of the world’s supply comes from Quebec.