DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 30 Yrs Exp. in the feld of Organic Chemistry. Serving chemists around the world. Helping them with websites on Chemistry.Millions of hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n

Saturday, 11 January 2014

Studies of Removal of Indigo Caramine Dye from Water by Formaldehyde and Urea Treated Cellulosic Waste of Citrus reticulata Peels



 Citrus reticulata, Orange


Studies of Removal of Indigo Caramine Dye from Water by Formaldehyde and Urea Treated Cellulosic Waste of Citrus reticulata Peels



Asian J. Chem., 2014, 26(1), pp 43-47   |  DOI:10.14233/ajchem.2014.15305
Rabia Rehman*, Javaria Zafar and Hina Nisar
*Corresponding author: Fax: +92 42 99230998; 
Tel: +92 42 99230463, Ext: 870; E-mail: grinorganic@yahoo.com


The Citrus reticulata (orange) peels has been employed as adsorbents for removing inorganic and organic pollutants from wastewater extensively due to its low cost and eco-friendly nature. This research work concerns with the study of comparative removal of Indigo carmine dye from water using simple, formaldehyde and urea treated Citrus reticulata peels. The effect of adsorption parameters were investigated and maximum sorption capacity was obtained from Langmuir isotherm model at optimized conditions, i.e.: 5.90, 14.79 and 71.07 mg g-1 for simple, formaldehyde treated and urea treated Citrus reticulata peels, respectively. 

Feasibility of process is indicated by the values of separation factor, Gibb’s free energy and adsorption intensity ‘n’. The results of present study indicate that Citrus reticulata peels has inherited a lots of capacity for removing anthraquinone type of dyes, which can be further improved by treating with formaldehyde or urea in economical way.

Asian Journal of Chemistry

AN INTERNATIONAL PEER REVIEWED RESEARCH JOURNAL OF CHEMISTRY


Inst of Chem Eng , Univ of punjab, Pakistan




OLD CAMPUS
http://www.pu.edu.pk/

INSTITUTE OF CHEMISTRY, UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN. (PUIC) - LAHORE

INST OF CHEMISTRY, UNIV OF PUNJAB LAHORE PAKISTAN




University of the Punjab, Lahore, Pakistan-54590


LAHORE AT NIGHT


LAHORE FOOD STREET

Thursday, 9 January 2014

Natural product based leads to fight against leishmaniasis

image

The growing incidence of parasitic resistance against generic pentavalent antimonials, specifically for visceral disease in Indian subcontinent, is a serious issue in Leishmania control. Notwithstanding the two treatment alternatives, that is amphotericin B and miltefosine are being effectively used but their high cost and therapeutic complications limit their use in endemic areas. In the absence of a vaccine candidate, identification, and characterization of novel drugs and targets is a major requirement of leishmanial research. This review describes current drug regimens, putative drug targets, numerous natural products that have shown promising antileishmanial activity alongwith some key issues and strategies for future research to control leishmaniasis worldwide


image

Natural product based leads to fight against leishmaniasis

 Review Article
Nisha Singh, Bhuwan B. Mishra, Surabhi BajpaiRakesh K. Singh, Vinod K. Tiwari
Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India , Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India 



VARANASI INDIA



Sunday, 5 January 2014

New Organic Conjugated Molecules


A series of organic conjugated molecules containing 2,3-benzopyridiazine and thiophene derivatives has been synthesized

Friday, 27 December 2013

Anti-Markovnikov Hydrohydrazination


A rhodium-based catalyst reverses regioselectivity in the production of hydrazones

Anti-Markovnikov Hydrohydrazination

Friday, 6 December 2013

Selection of boron reagents for Suzuki–Miyaura coupling

Graphical abstract: Selection of boron reagents for Suzuki–Miyaura coupling

 Suzuki–Miyaura (SM) cross-coupling is arguably the most widely-applied transition metal catalysed carbon–carbon bond forming reaction to date. Its success originates from a combination of exceptionally mild and functional group tolerant reaction conditions, with a relatively stable, readily prepared and generally environmentally benign organoboron reagent. A variety of such reagents have been developed for the process, with properties that have been tailored for application under specific SM coupling conditions. This review analyses the seven main classes of boron reagent that have been developed. The general physical and chemical properties of each class of reagent are evaluated with special emphasis on the currently understood mechanisms of transmetalation. The methods to prepare each reagent are outlined, followed by example applications in SM coupling.
http://pubs.rsc.org/en/content/articlehtml/2014/cs/c3cs60197h

Review Article

Selection of boron reagents for Suzuki–Miyaura coupling

*
Corresponding authors
a
School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK

Chem. Soc. Rev., 2014,43, 412-443

DOI: 10.1039/C3CS60197H
Received 12 Jun 2013, First published online 03 Oct 2013 

Sunday, 24 November 2013

Recent advances on diversity oriented heterocycle synthesis via multicomponent tandem reactions based on A3 coupling





ARKIVOC 2014 Part (i): Special Issue 'Reviews and Accounts', PG 1-20
Recent advances on diversity oriented heterocycle synthesis via multicomponent tandem reactions based on A3 coupling (14-8183LR) [pp. 1-20]
Yunyun Liu, a,b
a  Key Laboratory of Functional Small Organic Molecule, Ministry of Education, 
Jiangxi Normal University, Nanchang 330022, P. R. China 
b College of Chemistry and Chemical Engineering, Jiangxi Normal University, 

Nanchang 330022, P. R. China 


Full Text: PDF (235K)http://www.arkat-usa.org/get-file/48824/

A3 coupling reactions are the reactions between aldehydes, amines and alkynes, which yield
propargylamine derivatives under various catalyst conditions. By making use of the versatile
reactivity of propargylamines, tandem reactions initiated by the functional group(s) in the in situ
generated propargylamines constitute one of the most important applications of A3
 couplings.
These tandem reactions are especially useful for the synthesis of heterocyclic compounds. In this
review, the progress on multicomponent tandem reactions based on A3
 coupling is summarized.

Conclusions and Outlook

During the last decade, A3
 coupling reaction has evolved to a classical three-component protocol
for accessing various propargylamines. Numerous papers have been published on the
investigation of this synthetic method and spectacular advances on A3
 coupling reactions have
been witnessed in terms of green catalyst system, asymmetric catalysis etc. which also promoted
this coupling protocol as the most preferred option for propargylamine synthesis. From the
perspective of application, the propargylamines possessed broad spectrum of diversity andreactivity, and these compounds could serve as main building blocks in the synthesis of many
organic small molecules. From the perspective of atom economics, devising tandem reactions
based on key transformation of A3
 coupling for the synthesis of more complex and structurally
diverse heterocyclic products in one-pot represent a promising direction in modern organic
synthesis. As introduced in the contents, many elegant results have already been reported on this
area. On the other hand, at current state, this kind of tandem reactions were mainly performed by
using the second functional group in aldehyde, amine or alkyne to initiate subsequent
transformations on propargylamine intermediates, although some reactions using additional
components such as carbon dioxide to design tandem synthesis of heterocyclic products have
also been reported, this kind of examples are still rather rare. Thus, deeper and broader explore is
still demanding since using additional substrates for reactions is theoretically able to provide
considerably higher diversity both in reactions and corresponding products. In addition, versions
of asymmetric catalysis on traditional A3
 coupling have already been accomplished with nice
results, while asymmetric catalysis protocols of A3
 coupling-based tandem synthesis of
heterocycles kept unexplored, more systematic and advanced approaches of asymmetrical
catalysis on these tandem reactions are expected in future.



CHINA FLAG


Some of the thousands of life-sizeTerracotta Warriors of the Qin Dynasty, ca. 210 BCE

The Great Wall of China was built by several dynasties over two thousand years to protect the sedentary agricultural regions of the Chinese interior from incursions by nomadic pastoralists of the northern steppes


Detail from Along the River During the Qingming Festival, a 12th-century painting showing everyday life in the Song Dynasty's capital city, Bianjing (today's Kaifeng)


Shanghai skyline


The Great Hall of the People in Beijing, where the National People's Congress convenes




BEIJING

Thursday, 21 November 2013

TAK 593

Discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor

 Original Research Article
Pages 2333-2345
Naoki Miyamoto, Nozomu Sakai, Takaharu Hirayama, Kazuhiro Miwa, Yuya Oguro, Hideyuki Oki, Kengo Okada, Terufumi Takagi, Hidehisa Iwata, Yoshiko Awazu, Seiji Yamasaki, Toshiyuki Takeuchi, Hiroshi Miki, Akira Hori, Shinichi Imamura

Graphical abstract

image
.................. PAPER describes the design, synthesis, and biological evaluation of 2-acylamino-6-phenoxy-imidazo[1,2-b]pyridazine derivatives. Hybridization of two distinct imidazo[1,2-b]pyridazines 1 and 2, followed by optimization led to the discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (23a, TAK-593) as a highly potent VEGF receptor 2 kinase inhibitor with an IC50 value of 0.95 nM. The compound 23a strongly suppressed proliferation of VEGF-stimulated human umbilical vein endothelial cells with an IC50 of 0.30 nM. Kinase selectivity profiling revealed that 23a inhibited platelet-derived growth factor receptor kinases as well as VEGF receptor kinases. Oral administration of 23a at 1 mg/kg bid potently inhibited tumor growth in a mouse xenograft model using human lung adenocarcinoma A549 cells (T/C = 8%).

Full-size image (20 K)
Reagents: (a) ethyl (chloroacetyl)carbamate, Na2HPO4, DMA; (b) Ba(OH)2, NMP/H2O; (c) R1COCl, DMA; (d) 3-aminophenol, K2CO3, DMF; (e) 3-fluorobenzoyl chloride, DMA.



 TAK593



 
 TAK-593 is an oral formulation containing a small-molecule receptor tyrosine kinase inhibitor of both vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) with potential antineoplastic activity. TAK-593 selectively binds to and inhibits VEGFR and PDGFR, which may result in the inhibition of angiogenesis and tumor cell proliferation. Check for active clinical trials or closed clinical trials using this agent.

TAK-593 was highly selective for these families, with an IC(50) >1 μM when tested against more than 200 protein and lipid kinases. TAK-593 displayed competitive inhibition versus ATP. In addition, TAK-593 inhibited VEGFR2 and PDGFRβ in a time-dependent manner, classifying it as a type II kinase inhibitor. Analysis of enzyme-inhibitor preincubation experiments revealed that the binding of TAK-593 to VEGFR2 and PDGFRβ occurs via a two-step slow binding mechanism. Dissociation of TAK-593 from VEGFR2 was extremely slow (t(1/2) >17 h), and the affinity of TAK-593 at equilibrium (K(i)*) was less than 25 pM. Ligand displacement analysis with a fluorescent tracer confirmed the slow dissociation of TAK-593. The dissociation rate constants were in good agreement between the activity and ligand displacement data, and both analyses supported slow dissociation of TAK-593. The long residence time of TAK-593 may achieve an extended pharmacodynamic effect on VEGFR2 and PDGFRβ kinases in vivo that differs substantially from its observed pharmacokinetic profile. (source: Biochemistry. 2011 Feb 8;50(5):738-51. Epub 2011 Jan 10.). 

TAK-493 is  currently in Phase I clinical trials and is being developed by Millennium Pharmaceuticals, Inc. (a part of Takeda Pharmaceutical Company Limited).
 
References
 1. Biochemical Characterization of TAK-593, a Novel VEGFR/PDGFR Inhibitor with a Two-Step Slow Binding Mechanism. By Iwata, Hidehisa; Imamura, Shinichi; Hori, Akira; Hixon, Mark S.; Kimura, Hiroyuki; Miki, Hiroshi. From Biochemistry (2011), 50(5), 738-751.

2. Fused heterocyclic derivatives as kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancer. By Sakai, Nozomu; Imamura, Shinichi; Miyamoto, Naoki; Hirayama, Takaharu. From PCT Int. Appl. (2008), WO 2008016192 A2 20080207.