DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 30 Yrs Exp. in the feld of Organic Chemistry. Serving chemists around the world. Helping them with websites on Chemistry.Millions of hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n

Tuesday, 30 July 2013

Boron vapour trail leads to heterofullerenes

borafullerene
The simple route to borafullerenes could open up an interesting new avenue of heterofullerene research © Wiley-VCH
A team of scientists has developed a simple way to synthesise heterofullerenes – fullerenes with atoms other than carbon in their structure – by exposing fullerenes to boron vapour during their growth. They found that atom exchange with a carbon takes place to form a derivative known as borafullerene. The team believes the process can be easily scaled up and applied to other all-carbon analogues including nanotubes or graphene.
read all at

Monday, 29 July 2013

Nickel-Catalyzed Suzuki–Miyaura Couplings in Green Solvents

Figure

Nickel-Catalyzed Suzuki–Miyaura Couplings in Green Solvents

Publication Date (Web): July 23, 2013 (Letter)
DOI: 10.1021/ol401727y

The nickel-catalyzed Suzuki–Miyaura coupling of aryl halides and phenol-derived substrates with aryl boronic acids using green solvents, such as 2-Me-THF and tert-amyl alcohol, is reported. This methodology employs the commercially available and air-stable precatalyst, NiCl2(PCy3)2, and gives biaryl products in synthetically useful to excellent yields. Using this protocol, bis(heterocyclic) frameworks can be assembled efficiently.

Friday, 26 July 2013

One-Pot Approach to α,β-Unsaturated Carboxylic Acids

thumbnail image: One-Pot Approach to α,β-Unsaturated Carboxylic Acids

 

One-Pot Approach to α,β-Unsaturated Carboxylic Acids

Carboxylation of alkynes with carbon dioxide in a one-pot approach could become a practical route to unsaturated carboxylic acids
Read more

Concise Total Synthesis of a Newly Discovered Alkaloid

 








A concise synthesis of a novel alkaloid natural product with the pyrroloindoloquinazoline skeleton has been devised
Read more

Tuesday, 23 July 2013

Nano-Technoloogy Makes Medicine Greener


The ultra small nanoreactors have walls made of lipids. During their fusion events volumes of one billionth of a billionth of a liter were transferred between nanoreactors allowing their cargos to mix and react chemically. We typically carried out a million of individual chemical reactions per cm2 in not more than a few minutes. (Credit: Image courtesy of University of Copenhagen)http://www.sciencedaily.com/releases/2011/11/111103132357.htm
 Researchers at the University of Copenhagen are behind the development of a new method that will make it possible to develop drugs faster and greener. Their work promises cheaper medicine for consumers.
Over the last 5 years the Bionano Group at the Nano-Science Center and the Department of Neuroscience and Pharmacology at the University of Copenhagen has been working hard to characterise and test how molecules react, combine together and form larger molecules, which can be used in the development of new medicine.http://www.sciencedaily.com/releases/2011/11/111103132357.htm



Sunday, 21 July 2013

The first total synthesis of fuscain

First total synthesis of fuscain

First total synthesis of fuscain


Fuscain is a new furanolactam isolated from the sponge Phacellis fusca from the South China Sea. Furan analogues isolated from marine organisms have valuable medicinal properties. The first total synthesis of fuscain is reported in Journal of Chemical Research December issue. The key step in the synthesis is the formation of seven-membered lactam by acylation of a furan ring using the mild Lewis acid CuSO4•5H2O.
Fuscain, a new furanolactam which was originally isolated from the sponge Phacellis fusca collected in South China Sea, showed a moderate cytotoxicity toward P388 and L1210 cell lines. The same sponge yielded three pyrrololactam alkaloids: saldisin, 2-bromoaldisin and debromohymenialdisin.2 Recently, furan analogues isolated from marine organisms have shown anticancer,3–5 antibacterial,6 anticoagulant, antifungal, antimalarial,  antiplatelet, antituberculosis and antiviral activities11. Aldisin-based derivatives can be easily synthesised. However, it is still a challenge to synthesise fuscain. Hence the biological effects of fuscain and its derivatives on cell cycle progression and antitumour activities have rarely been reported. The synthetic route to fuscain is shown below.
The key step is an intramolecular Friedel–Crafts cyclisation to form the seven-membered ring. Various Lewis acids (polyphosphoric acid, POCl3, polyphosphoric acid–acetic acid, POCl3–P2O5, TFA or MSA) have been reported for Friedel– Crafts cyclisation.13,14. Initially, we selected PPA and P2O5 as catalysts but no product was obtained. Because of the structural difference between Alidisin and fuscain, the aromaticity of furan ring is less than a pyrrole ring, and a furan ring usually polymerised under acidic conditions, we selected a relatively mild Lewis acid CuSO4•5H2O to complete the intramolecular cyclisation to form fuscain.


Source: Journal of Chemical Research, Volume 36, Number 12, December 2012 , pp. 736-737(2)
doi: 10.3184/174751912X13528167435099
Yuan-wei Liang, Xiao-jian Liao, Chang-jun Wang, Jin-zhi Guo, Shuo Li and Shi-hai Xu*
Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China