DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n

Monday, 9 October 2017

A green route for methanol carbonylation


Catal. Sci. Technol., 2017, Advance Article
DOI: 10.1039/C7CY01621B, Paper
Youming Ni, Lei Shi, Hongchao Liu, Wenna Zhang, Yong Liu, Wenliang Zhu, Zhongmin Liu
Halide-free and noble metal-free pyridine-modified H-mordenites exhibit high stability and selectivity in methanol carbonylation to acetic acid.

A green route for methanol carbonylation

 Author affiliations

Abstract

Acetic acid is one of the most important bulk commodity chemicals and is currently manufactured by methanol carbonylation reactions with rhodium or iridium organometallic complexes and halide-containing promoters named Monsanto or BP Cativa™ homogeneous processes, respectively. Developing a halide-free catalyst and a heterogeneous process for methanol carbonylation is of great importance and has recently attracted extensive research attention. Here, we report a green route for direct synthesis of acetic acid via vapor-phase carbonylation of methanol with a stable, selective, halide-free, and noble metal-free catalyst based on pyridine-modified H-mordenite zeolite. Methanol conversion and acetic acid selectivity can reach up to 100% and 95%, respectively. Only little deactivation is observed during the 145 hour reaction.
 
////////////

Sunday, 17 September 2017

Endo-4,7-bis(hydroxymethyl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (endo-4,7- bis(hydroxymethyl)norcantharimide)






Endo-4,7-bis(hydroxymethyl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (endo-4,7- bis(hydroxymethyl)norcantharimide), 4 (method A)

Endo-4,7-bis(hydroxymethyl)norcantharimid-5-ene (120 mg, 0.53 mmol) was dissolved in water (3 mL), Pd/C 10% was added (15 mg) and reaction mixture was placed under hydrogen atmosphere for 8 h at 24 °C. Catalyst was filtered off and washed thoroughly with water (3 × 3 mL), filtrate was evaporated under reduced pressure. Target compound 4 was obtained as white solid, yield 87% (110 mg).

1H NMR (D2O) = 3.76 (s, 4H), 3.46 (s, 2H), 1.61-1.72 (m, 4H);

1H NMR (DMSO-d6) = 11.10 (s, 1H), 5.08 (s, 2H), 3.66 (s, 4H), 3.37 (s, 2H), 1.71 (m, 2H), 1.49 (m, 2H);

13C NMR (D2O) = 179.0, 88.8, 60.7, 52.3, 27.0 ppm.

m/z HRMS (ESI) Calcd. for C10H13NO5 [M+Na]: 250.0686. Found 250.0696.

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02211E, Paper
F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov
Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations
//////////