DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Friday, 26 September 2014

Synthesis of Acetal Protected Building Blocks using Flow Chemistry and Flow I.R. Methods: Preparation of Butane 2, 3- Diacetal Tartrates

C.F. Carter, I.R. Baxendale, M. O’Brien, J.B.J. Pavey, S.V. Ley, Org. Biomol. Chem2009, 7, 4594.

Corresponding authors
Department of Chemistry, Innovative Technology Centre, University of Cambridge, Lensfield Road, Cambridge, UK
E-mail: svl1000@cam.ac.uk
AstraZeneca, Bakewell Road, Loughborough, Leics, UK

The syntheses of butane-2,3-diacetal protected tartrate derivatives are described using continuous flow processing techniques with in-line purification and I.R. analytical protocol

Tuesday, 23 September 2014

Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts

Catal. Sci. Technol., 2014, 4,3631-3635
DOI: 10.1039/C4CY00979G, Communication
Sondomoyee Konika Moromi, S. M. A. Hakim Siddiki, Md. Ayub Ali, Kenichi Kon, Ken-ichi Shimizu
Pt/SnO2 is presented as the first example of a reusable heterogeneous catalyst for acceptorless dehydrogenative coupling of primary alcohols to esters under additive-free and solvent-free conditions.

 Supported platinum catalysts have been studied for the acceptor-free dehydrogenative 
coupling of primary alcohols to esters in the liquid phase under solvent-free conditions in N2 at 180 °C. 
The activity depends on the support material, and Pt-loaded SnO2 (Pt/SnO2) gives the highest activity. Pt/SnO2 shows higher activity than various transition metals
 (Ir, Re, Ru, Rh, Pd, Ag, Co, Ni, Cu) loaded on SnO2. The Pt/SnO2  
catalyst (1 mol%) selectively converted various primary alcohols to their corresponding esters in moderate to 
high isolated yield (53–91%). This is the first example of reusable heterogeneous catalysts for the acceptor-free dehydrogenative coupling of primary alcohols to esters 
under additive-free and solvent-free conditions. Mechanistic and infrared
 (IR) studies are also shown to discuss the reaction pathway and a possible role of the SnO2 support as Lewis acid sites that activate carbonyl groups of adsorbed aldehyde intermediates.

Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts

Corresponding authors
Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan 
E-mail: kshimizu@cat.hokudai.ac.jp;
Fax: +81 11 706 9163
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
Catal. Sci. Technol., 2014,4, 3631-3635

DOI: 10.1039/C4CY00979G


A Catalyst That Multitasks To Make Complex Molecules Organic Synthesis: Method leads to complex, biologically relevant molecules on gram scale

A copper catalyst guides this multicomponent reaction. 
A new synthetic strategy that relies on a multitasking copper catalyst allows chemists to construct useful molecules faster and with higher yield. Experts say it promises to fast-track complicated syntheses.
Fewer steps in a chemical synthesis often translate to a better yield of the final product. Chemists therefore prize so-called multicomponent reactions that orchestrate the assembly of multiple building blocks into a complex structure in a single stroke.
Boston College chemists Amir H. Hoveyda, Fanke Meng, and Kevin P. McGrath demonstrate their virtuosity in this regard by using an inexpensive copper catalyst that puts together complex molecules from an allene, a diboron reagent, and an allylic phosphate. The resulting products contain a stereogenic carbon center, a monosubstituted alkene, and a tough-to-synthesize Z-trisubstituted alkenylboron (Nature 2014, DOI: 10.1038/nature13735).

Sunday, 21 September 2014

Metal-free coupling of saturated heterocyclic sulfonylhydrazones with boronic acids


 Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
 Neusentis Chemistry, Pfizer Worldwide Research and Development, The Portway Building, Granta Park, Cambridge, CB21 6GS, U.K.
J. Org. Chem.201479 (1), pp 328–338
DOI: 10.1021/jo402526z

The coupling of aromatic moieties with saturated heterocyclic partners is currently an area of significant interest for the pharmaceutical industry. Herein, we present a procedure for the metal-free coupling of 4-, 5-, and 6-membered saturated heterocyclic p-methoxyphenyl (PMP) sulfonylhydrazones with aryl and heteroaromatic boronic acids. This procedure enables a simple, two-step synthesis of a range of functionalized sp2–sp3 linked bicyclic building blocks, including oxetanes, piperidines, and azetidines, from their parent ketones.

Sunday, 14 September 2014

Flow chemistry syntheses of natural products

J.C. Pastre, D.L. Browne, S.V. Ley, Chem. Soc. Rev. 201342, 8801-9198.
The development and application of continuous flow chemistry methods for synthesis is a rapidly growing area of research. In particular, natural products provide demanding challenges to this developing technology. This review highlights successes in the area with an emphasis on new opportunities and technological advances.

Wednesday, 10 September 2014

Benzocoumarin Family Complete

Benzocoumarin Family Complete

Benzo[g]coumarins most suitable for applications as photonic materials
Read more

 Benzene-fused coumarins, benzocoumarins, constitute a promising family of photonic materials due to the extended nature of their π-electron system. Among four possible subfamilies of benzocoumarins


Bispirooxindole Derivatives

Bispirooxindole Derivatives

Regio- and stereoselective synthesis of bispirooxindole derivatives via a three-component 1,3-dipolar cycloaddition
Read more

An efficient synthesis of spirooxindole derivatives is highly valued due to the pronounced biological activities of this class of compounds.