DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Wednesday, 26 December 2012

Iron-Catalyzed Synthesis of 2-Arylbenzo[b]furans

Iron-Catalyzed Synthesis of 2-Arylbenzo[b]furans

Synthetic Communications

Volume 43, Issue 6, 2013

Jianguo YangGuodong Shen & Dingben Chen
pages 837-847

copy paste link in browser


An iron-catalyzed procedure was employed to achieve both the Sonogashira cross-coupling and intramolecular o-arylation of o-iodophenols and aryl acetylenes/1-substituted-2-trimethylsilyl acetylenes. A variety of 2-arylbenzo[b]furans were synthesized in moderate to good yields under the catalysis of 5% FeCl3 and 10% 1,10-phenanthroline.

Monday, 3 December 2012

Sodium dodecyl sulfate in water: greener approach for the synthesis of quinoxaline derivatives

A simple energy efficient one step SDS catalysed 0.03% greener method for the synthesis of quinoxaline der using water as solvent is described

A mild and efficient synthetic method has been developed for the preparation of biologically important quinoxalines in excellent yield from relatively safe precursor α-bromoketones and 1,2-diamines using catalytic amount of micellar sodium dodecyl sulfate in water at ambient temperature. The method is also found effective for the introduction of quinoxaline moiety into the ring A of pentacyclic triterpenoid, friedelin. Ambient reaction conditions, renewable catalytic condition, inherently safer chemistry, excellent product yields, and water as a reaction medium display both economic and environmental advantages.

General procedure for quinoxalines

In a typical experimental procedure, o-phenlylenediamine (1 mmol) and α-bromoketone (1 mmol) in 1:1 molar ratios was taken in a 50 ml round bottom flask. To this water (3 ml) and 10 mg (0.03 mol%) SDS was admixed. The reaction mixture was then allowed to stir with magnetic spinning bar at room temperature. After the completion of the reaction (checked by TLC), the residue was filtered, washed with water, dried and finally recrystallized from methanol. The desired pure product was characterized by spectral (IR, 1H- and 13C-NMR) data and compared to those reported in literature.

Green Chemistry Letters and Reviews


Pranab Ghosh & Amitava Mandal
 Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734 013, India

Sodium dodecyl sulfate in water: greener approach for the synthesis of quinoxaline derivatives

Quinoxalines are ubiquitous heterocyclic units in pharmaceuticals and bioactive natural products 1–4. They are used as pharmaceuticals and antibiotics such as echinomycin, levomycin, and actinoleutin which are known to inhibit the growth of Gram-positive bacteria and are also active against various transplantable tumors 1–3. Antitumoral properties of quinoxaline compounds have also been investigated